教員・教室員について

プレシジョン医療学分野 教授

名前 前田 高宏(まえだ たかひろ)
卒業年 1994(平成6)年
学位取得年月 2002年3月 医学博士学位取得
専門領域 血液内科学
資格 日本内科学会認定内科医
所属学会 日本血液学会(評議員)、日本造血細胞移植学会、日本内科学会,日本癌学会,日本輸血・細胞治療学会、Society of Hematologic Oncology、American Society of Hematology

略歴

1994年~1998年

JA愛知厚生連江南厚生病院 血液・腫瘍内科

1998年~1998年

豊橋市民病院 血液・腫瘍内科

1998年~2001年

名古屋大学医学部大学院、名古屋大学医学部付属病院

2001年~2005年

Memorial Sloan-Kettering Cancer Center (Research fellow)

2006年~2011年

City of Hope National Medical Center (Assistant professor)

2011年~2016年

Brigham and Women's Hospotal・Division of Hematology, Harvard Medical School 
(Assistant professor), Broad institute (Associate member), Harvard Stem Cell Institute (Affiliated faculty),Dana-Farber/Harvard Cancer Center(Member)

2016年~2020年

九州大学大学病院遺伝子・細胞療法部 准教授
2020年

九州大学医学部プレシジョン医療学分野 教授
現在に至る

代表的業績

  1. Maeda T et al. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood, 96(12): 3847-56, 2000.
  2. Ozawa Y et al. Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood, 98(7): 2116-23, 2001.
  3. Maeda T et al. Role of the proto-oncogene pokemon in cellular transformation and ARF repression. Nature, 433: 278-285, 2005.
  4. Maeda T et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science, 316: 860-866, 2007.
  5. Maeda T et al. LRF is an essential downstream target of GATA1 in erythroid development and regulates BIM-dependent apoptosis. Dev. Cell, 17: 527-540, 2009.
  6. Sakurai et al. The LRF transcription factor regulates mature B cell development and the germinal center response in mice. J Clin Invest. , 121(7):2583-98, 2011.
  7. Tsuji K et al. Stage-specific functions of LRF in the transcriptional control of osteoclast development. Proc Natl Acad Sci USA, 14;109(7):2561-6, 2012.
  8. Zhang B et al. Altered microenvironmental niche regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell, 21(4):577-92, 2012.
  9. Lee SU. LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance. Blood, 121(6):918-29, 2013.
  10. Chen C et al. Snx3 regulates recycling of the transferrin receptor and iron assimilation. Cell Metab., 17(3):343-52, 2013.
  11. Canver MC et al. Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J Biol Chem., 1;289(31):21312-24, 2013.
  12. Ishikawa Y et al. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica, 100(4):439-51, 2014.
  13. Zhao Z et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci., 18(7):978-87, 2015.
  14. Norton LG et al. Notch Signal strength controls cell fate in the hemogenic endothelium. Nat Commun. Oct 14;6:8510, 2015.
  15. Canver MC et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 527(7577):192-7, 2015.
  16. Masuda T et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 351(6270):285-9, 2016.
  17. Miyawaki K et al. Identification of unipotent megakaryocyte progenitors in human hematopoiesis. Blood. 2017 Mar 23. pii: blood-2016-09-741611.
  18. Chung J et al. Erythropoietin signaling regulates heme biosynthesis. Elife. 2017 May 29;6. pii: e24767.
  19. Yamauchi T et al. Genome-wide CRISPR-Cas9 screen identifies leukemia-specific dependence on a pre-mRNA metabolic pathway regulated by DCPS enzyme. Cancer Cell. 2018 Feb 8. pii: S1535-6108(18)30012-6.
  20.  Sugio T et al. Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS. Blood Advances, Sep 11;2(17):2242-2252.
  21. Schoonenberg V.A.C.et al. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biology, 2018 Oct 19;19(1):169. doi: 10.1186/s13059-018-1563-5. 
  22. Canver M.C. et al. DrugThatGene: integrative analysis to streamline the identification of druggable genes, pathways, and protein complexes from CRISPR screens. Bioinformatics, 2018 Nov 5. doi: 10.1093/bioinformatics/bty913
  23. Sher F. et al. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet. In press.